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Matched filters for the optimal high-speed detection of binary signals are de-
signed and their performance as a function of their complexity is explored. The
range of filters designed extends from a 2-element filter whose performance is
about 0.7 dB below the ideal filter, up to a 20-element filter with a degradation

of about 0.1 dB.

l. Introduction

Let x (¢) be a binary signal with the levels =1 and let
the kth bit (a;) be transmitted during the interval

(k—1)T=t<kT 1)

In the absence of noise, sampling x (£) at any point in the
interval (1) will yield a;. With noise present, the search
for an optimal detector leads to the idea of a matched
receiver, that is, a receiver whose transfer function is
tailored to optimize the detection of a signal having a
prescribed spectrum (Ref. 1).

In the simple case considered here, the properties of the
matched receiver can be obtained directly without resort-
ing to the general theorem. We adopt this approach here
in the interest of completeness.
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To determine bit g in the presence of noise, we average
the signal over the kth bit period

_ 1 fm
Xy = =
T (k-1)T

x(t) dt (2)

The average % is now used to determine a; according to
the following decision rule:

ay = 11f5c'k§0
3)

A straightforward realization of this scheme would call for
an integrator that would have to be sampled and reset at
the bit rate 1/7.
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Alternatively, recalling that the output of a linear filter
is a convolution of its input, it is conceivable that a special
type of filter can be designed such that when x (¢) is its
input, its output y () approximates

y (kT) = x; (4)

Thus, the integrator would be replaced by a presumably
cheaper passive filter. The main advantage, however,
would be in the elimination of periodic resetting. The con-
ceived filter would operate continuously. Sampling its out-
put at ¢ = kT and applying the decision rule in Eq. (3)
would yield ay.

Il. The Matched Filter

Our goal in this section is to show that a filter satisfying
Eq. (4) is indeed possible.

Anticipating that x; will be proved to be a sample of the
filter output, we seek to rephrase Eq. (2) as a convolution.
This calls for the “box-car” function B () defined in terms

of the step function u (t) as follows:

Br(t) = [u) —u(t — 7)) ®

Using Eq. (5), Eq. (2) can be rephrased as follows:

5= [Tx0B-G-pTia (@
Noting now that By (¢) satisfies

Br(t + T) = Bz (—t) (7

we get the final form

% =/°°x(t) B, (kT — 1) dt (8)

The convolution on the right can be interpreted as the
output (at time kT) of a filter fed by x () and having the
impulse response By ().

Denoting the filter output as y (t), Eq. (8) states
%, =y (kT) (9)
Strictly speaking, such a filter is not realizable in terms of

lumped parameters. However, a sufficiently good approxi-
mation to it is realizable.
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One such realization which approximates Br (t) while
minimizing the integral of the squared error has been
described (Ref. 2). It can be shown, however, that the
telemetry detection performance of any approximation
also depends on a sequence of integrals of the first power
of the error. Thus, while elaborate optimization tech-
niques have been used to obtain the networks of (Ref. 2),
they are not optimal for the present application.

We shall see that a simple straightforward approxima-
tion method due to Guillemin (Ref. 3) yields reasonably
good results. For certain parameter values, these are
better than the results obtained with the networks of
Ref. 2. Guillemin’s method is illustrated in Fig. 1. Let
H(s), H,(s), H.(s) be the Laplace transforms of h (),
hy (t), h. (t), respectively. Then H (s), the desired transfer

h{t) = B_{t)

—t—

——

Fig. 1. Functions generating B (1)
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function, can be readily expressed in terms of H, (s) =
1/sT, using the shift operator e-*7. Thus,

1—¢3T

H(s) = T

H,(s) —e*TH,(s) =

(10)

Normalizing the complex frequency variable s through

=sT
H(s ) = F(y) (10a)
Hi(s) = Fi(y)
we have
H() =F(y) = —% (10b)

Strictly speaking, H (s), being a transcendental func-
tion, is not realizable in terms of lumped circuit elements.
We therefore have to settle for a rational approximation
to it. Guillemin’s approach avoids approximating e-*7,
introducing instead the approximation inherent in the
truncation of a Fourier series. This is effected through
the pair h; (t), H, (s) as follows: In analogy with Eq. (10)
we have

F(y) =H(s) = H.(s) + e*" H. (s) = (L + ) F2 (y)

(11)
Eliminating e~ between Egs. (10b) and (11), we obtain

2F,(y)

F(y)= T3 7F.() (12)

To get F, (y) we expand h, (t) in a Fourier series

=u (t)ibk sin <7,k %) (13)

where
0 (k even)
T (k odd)

Taking the Laplace transform of Eq. (13) we get

H,(s) = TZ k(bk> (1)
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Finally, substitution of Eq. (14) in Eq. (15) yields

- 1
RO=4) ri@mons 09

At this point we approximate by truncating the F, (y)
expansion after N terms. Distinguishing approximations
by a circumflex we then have

BO=R0=1Y =gy O

2?‘\2(7)
1+yF.()

We refer to the network realizing g (s) as the Nth order
network. As is evident from Egs. (17) and (18), this trans-
fer function has 2N poles.

Hs)=F) = (18)

lIl. Performance Criteria

g (s), the Nth order approximation transfer function,
approaches the ideal H (s) as N tends to infinity. As we
shall presently see, the number of components in the real-
ization of the Nth order filter is 3N — 1. We are interested
in the performance of H (s} as a function of N so that the
improved performance associated with a more complex
realization can be accurately gauged.

We start with a detailed examination of the effect of
the approximation transfer function H (s) on the binary
signal x (£). In line with the precedlng notation, we denote
the gutput of this filter by (¢t ) and its §-function response
by BT (t). Thus we have

90 =[x B (19)

[¢]

Note that x (+) may be expressed in terms of the box-car
function as follows

2()=T S aBrlr— (k—1)T] (20)
k=1
Substituting in Eq. (19) we get
70 =3 afr(t—kT) (21)
k=1
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where

ret) =T / "Be(2) Bor + t)dr (22)

[

To see the significance of £y (¢), note that for the ideal
filter H (s), the above procedure yields

y() = 2 yr (¢ — KT) (23)

with
() =T [ "By () By (+ - £) dr (24)

Unlike Eq. (22), the two functions here are identical and
pr (t) is easily seen to be the simple triangle function dis-
played in Fig. 2. For arguments which are integral mul-
tiples of T, the effect of this function is very similar to
that of a §-function. Thus

wr (kT) = 8o (25)
Hence

y (kT) = ;%;zi prlk—)TI=Sasu=a  (26)

i=1

The function of interest to us, 27 (f), is an approxima-
tion to fir (t). Thus, corresponding to Eq. (25), we have

2r (KT) = (27)
with
=0 (k<0
m{ =1 (k=0) (28)
~0 (k>0

Note that we are considering here a family of functions,
since fir () is also a function of N. As N increases, 77 (£)
approaches 7 (t) and 7 tends to 8q. This is evident in
Fig. 3 which shows %z (t — T) for N = 3.

Applying Egs. (27) and (28) to Eq. (21) we get

A k k-1
ykT)=3 aimy; = Y Qi m; (29)
i=1 i=0
k-1
= {l\'to ap + 3 ax-; ﬁi
i=1

We recall now that our objective is to use § (kT) to
determine a;. Equation (29) shows that in addition to the
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Fig. 2. Function pur ()

desired output, 1/1\10ak, we also get small contributions from
all preceding bits. This raises the following question:
Assuming that a; = 1, what is the probability that applica-
tion of the decision rule of Eq. (3) would yield a; = —1?
The sum in Eq. (29) is one contribution to this probability.
The other major contribution is noise. Let us assume that
the signal x (¢) feeding the filter is accompanied by white
gaussian noise yielding the noise output n(t). The filter
output is now given by

z(t) =n(t) +7 () (30)
In particular, for a, =1

z(kT) = m, + {n(kT) + kz m ak-i} (31)

J L/

o
il

LA LN

fgle=T)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/T

Fig. 3. Function iy (t —T) for N=3
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Assuming now that the bits a; are totally uncorrelated
with themselves as well as with the noise samples, we
get for the mean and variance of z (kT)

E[z(kT)] = m,
(32)

k-1

N\

oi=o}+ 2 mi
i=1

where o2 is the variance of the noise output. Finally,
applying the law of large numbers we conclude that z (kt)
may be reasonably well approximated by a normally dis-
tributed random yariable with the parameters prescribed
in Eq. (32).

Application of the decision rule (3) to z (kt) will yield
the wrong answer (ax = —1) when z (kT) < 0. Thus, the
probability of error is given by the integral of the z distri-
bution over negative z. Alternatively, using the normal-
ized entity

0w ==/ ee(-g)x @

and denoting

m
== (34
we see that
probability of error = Q (£) (35)

By symmetry, this is also the probability of error when
a; — —1

The parameter ¢ is a function of N through 7, as well
as via o.. To compare the performance of networks of
different orders, we need an explicit formulation of £ (N).
To obtain this, let us assume that the input to the filter
consists of the signal at levels of =1 V (across 1 2) and an
accompanying white noise with the (two-sided) spectral
density v (in W/Hz). This means that

(0 = 2=f)
(36)

az,=[° |I’?(iw)|zvdf=v/°°§;(t)dt

00 1]

It is convenient to express this in terms of the ideal net-
work (N = o) for which

a=y [“Bia= (37
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Thus we write for the network of order N
0% = Py e (38)
n N T

where py is computable from the known ﬁr (). It is inde-
pendent of T and varies monotonically from p, = 0.81 to
P = L.

Applying Egs. (38) and (32) to Eq. (34), we get

=3 (39)

Hence

T
7 (1)

Hence

2 ()] e

Equation (42) is an implicit formulation of the desired
performance criterion. Given a prescribed error proba-
bility Q (¢), we find ¢ from the relevant tables. Now an
ideal network (N = o) would realize the prescribed per-
formance with a noise power density v, given by Eq. (41).
If, however, we use an Nth order network, we could still
realize the prescribed Q (£) provided the noise power den-
sity is reduced. Equation (42) computes this reduction.

Table 1 shows vy /v, (in dB) as a function of error prob-
ability for 1 == N =7.* The corresponding plots are shown
in Fig. 4. Note that for an error probability of 10-3, the
simplest network (N = 1) is 0.69 dB worse than the ideal.
The corresponding value for the second order network is
0.33 dB. From here on, however, the rate of improvement
diminishes. Essentially the same pattern holds for all other
values of the error probability in Fig. 4.

1Actually the table values refer to the synthesized networks and
thus reflect errors of the synthesis process. These, however, do not
exceed 0.001 dB. See Section IV,
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Table 1. vy/v. in dB, as a function of error probability and network order N

ERROR PROBABILITY

Fig. 4. vy/v, as a function of error probability
and network order N

IV. The Filter Synthesis

Applying the criteria of the last section, we arrive at
the specific H (s) that would satisfy the requirements of
the problem at hand, It remains now to synthesize a net-
work realizing this ig (s).
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NETWORK ORDER 1 2 3 4 5 8 ?
PROBABILITY
OF ERROR
1.-01 -.613 -.324 -.213 -.158 -.126 -e10H -.089
1.-D2 -.681 -.327 -.214 -+153 -.126 -«105 ~.0889
1.-03 -.520 -+ 329 -.215 -e159 -.217 -.105 -.089
1.-04 -.699 -.332 -.2186 -.1860 -.121 -.105 ~.089
1.-05 -.708 -, 335 -.218 -.161 -.128 -.106 -.089
1.-08 -7 -.338 -.219 -«162 -.128 -+106 -.083
1.-01 -.126 <. 34} -.220 -.162 ~.129 -.106 -.089
1.-08 ~.136 - 344 -.222 -.163 -.129 -.107 -.089
1.-03 - .85 -. 388 -.2213 -.168 -.130 -a101 -.090
1.-10 -.754 -.34% -.224 -<185 -.130 -.107 -.030
0 The particular realization considered here is that of a
ya N7 lossless network inserted between a generator having a
0.1 T finite internal resistance and a purely resistive load. In
L\ other words, our goal is to design the lossless network
0.2 N\ indicated in Fig. 5 so as to realize
0.3 V. (s) A
A\ 2 = oH —
= = s) =W(s 43
71 \\\_6 Vg(S) ( ) ( ) ( )
8 04 \_i
g \&
B os 2 The constant multiplier « is necessary to allow arbitrary
' values of
R
-0.6 === 44
1 P~ R, (44)
A B
0.7 . . . .
| (See, however, the discussion associated with Eq. 60).
The relationship between p and « can be established via
0.8 :
o o o e 02 3 the DC behavior of the filter. From Egs. (17) and (18)
10

we see that

A A 8§ X
H(0)=2H2(0)=?' > (2k—1)%=£0 (45)
k=1
”
Fig. 5. Connection of the filter
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A
But with the network being lossless and H (0) 5= 0, Fig. 5
prescribes

V.(0) _ R, p
V,(00 R, +R. 1+, (46)
Hence
o=t (47)

H(0)(1 + p)

The synthesis considered will be that of a prototype
filter with

. R=1o
p=1 (48)
T = =sec

This particular choice of T allows some of the computa-
tions to be carried out with integers, leading to higher
precision (see Eqgs. 17 and 10a).

Filters realizing any other values of R, and T are trivi-
ally obtained from this prototype filter (see Eq. 65). Modi-
fication of p, however, calls for a new synthesis. Denoting

s=q (49)

we get for the prototype

A A 1 _4 . AQ@
Ro=3) 7w B ™

where A (q), B (q) are polynomials of degrees N — 1, N re-
spectively. B (q) is obtained directly by multiplying out
its factors. The simplest way to obtain A (q) is based on
the observation that Eq. (50) implies that all residues of
A(q)/B(q) are 1. This leads to

Aq) = %‘Q (51)

Thus, for any finite N, A (q), B(q) are easily determined
polynomials all of whose coefficients are expressible as
sums of products of positive integers. Substituting Eq. (50)
in Eq. (18), we express W (s) directly in terms of these
polynomials:
2
. = A(g)
Wi(s) =aH(s) = - (52)
sA(q) + - B(q)
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The actual synthesis is straightforward and follows the
standard insertion loss technique (Ref. 4). We are pointing
here only highlights of the process.

The subsequent discussion will refer to the follow-
ing three alternate matrix descriptions of the two port of
Fig. 5:

[ Zy,(8)  Zin(s)]

ZO=| 7,0(5)  Zua(s).
0=[y10 1) @

T Su(s) Su(s)]

SO =] 5,.(5)  Suls) |

These are the open-circuit impedance matrix, short-circuit
admittance matrix, and scattering matrix, respectively:

The two basic elements in the synthesis procedure are:

(1) The transmission zeros of the network, that is, the
zeros of A (q) in our case.

(2) Any one of Zy; (s), Z22 (s), Y11 (5), Y22 (5)?

The transmission zeros are obtained directly from A (q).
The immittances mentioned in b are derived from W (s) in
an indirect way. First, a scattering matrix satisfying W (s)
is determined. The required immittances then follow the
application of the standard transformations generating Z
and Y from S.

In obtaining S, use is made of the fact that for a lossless
two port and a transfer function whose numerator is an
even s polynomial, the scattering matrix has the following

form (Ref. 5):

LR 59 ] ”

SO=20 L) —he(s)

where g, h, f are real polynomials,?

ha(s) = h(—s) (55)
and

g8+ = hhy + ffs (56)

2Strictly speaking, only Zi (s), Y (s) are capable of generating all
the network elements. Referring to Fig. 6, it is obvious that Yu (s)
cannot determine Cx» while Z. (s) will not determine L..

3The polynomial h (s) should not be confused with the time function
h (t) of Section 1.
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To realize W (s) we identify

g(s) =sA(q) + I B(q) (57)
f(s) =vA(q) (58)
where
4
PR . (59)

To complete the determination of S, h (s) is now obtained
from Eq. (56). Note that this equation provides a unique
determination only for the product hh.. The determina-
tion of h itself is not unique. Generally, a given hh, is
consistent with a number of different h functions leading
to different network realizations. In some situations, how-
ever, there is no real polynomial h(s) corresponding to
the prescribed hh.. This happens to be the case for the
first-order network (N = 1) where analysis shows a for-
bidden p range given by

1
149 <p< 149 (60)

In view of this, we modify the prototype specifications
(48) as follows:

R, =10

= 1.5, N=1
1=1.  ~N>1 (61)
T = =sec

Of the various possible h(s), we examine here only
those which satisfy the following constraint

All roots of h (s) are on one side
of the imaginary axis (62)

Having determined S, we turn now to the transformation
to Z and Y. This is most easily expressed in terms of the
even and odd parts of g and h. Denoting

=8t &

[g.(—s) (s); go(—8) = —go(s)]
h=h,+ h, ;

= g
[he(=5) = he(s);  ho(=$) = —ho(s)]
(63)
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the required immittances are expressible as follows:

le_ge+he _ge_he
R, B go“ho Yuly = go+ho

(64)
Zz_z___ge_he Y R_ge+he
Rz_go—ho = z_go+ho

The actual synthesis applies the method of Fujisawa
(Ref. 6) which yields a transformerless ladder configura-
tion. We have chosen the synthesis realizing the trans-
mission zeros as parallel resonance circuits as shown in
Fig. 6. The combination of this configuration constraint
and the roots constraint (62), limits the various possibili-
ties so that there is only one prototype for each N value.*

Fig. 6. Filter configuration

The computed parameter values of networks up to
order 7 are shown in Table 1, which is directly related to
Fig. 6, and is mostly self-explanatory (RGEN = RI;
RLOAD = R2; capacitor CR(I) resonates coil L (I) at
frequency FR (I)). A new entity introduced here is the
“sample gain” which is defined as the ratio (in the absence
of noise) of the filter output voltage at time kT to the
generator voltage representing bit ay.

To illustrate the use of this table assume that we wish
to construct a matched filter for bit time T’ and generator
resistance R,’. Assigning primes to all the parameters of
this filter, we obtain them according to the following

4]t should be borne in mind, though, that given a network such as
that in Fig. 6, one could alter the connections, feeding the input
in series with R, and taking the output across R, realizing a trans-
fer function which is a constant multiple of the original transfer
function.
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transformations applicable to inductances, capacities, and
frequencies, respectively:

L _TR'

L~THRg

C_TR (65)
C  Tr/

.7

for

With T = = sec and R, =1 Q, Table 2 provides all the
information necessary to determine the “primed” filter.

A specific example is shown in Table 3 which refers to
filters associated with a 10-us bit time and a 50-Q generator.

V. Reliability of Element Values

To check the reliability of the computed element values
we compute the performance of the synthesized network
and compare it to the design goal. Since we are dealing
here with a ladder configuration, it is relatively easy to
obtain the transfer function of the synthesized network
by multiplying out the ABCD matrices of the individual
network sections. Note that this computation is quite pre-
cise since it involves the multiplication and summation of
positive quantities only. Having thus obtained the “syn-
thesized transfer functions” we compute from them vy /v,
the performance criteria described in Section III.

Comparing these to the values obtained from 7 (s)
directly, we found that the discrepancies for all the net-
works shown in Table 2 do not exceed 0.001 dB. Further-
more, the values appearing in Table 1 are those of the
synthesized networks so that even the above minor dis-
crepancies should not be of concern to the user.

Table 2. Network elements for T = 7 sec, R, = 1Q

*3sUNITSs e SECOND+HERTZsCHM ¢ HENRY s F ARAD
Tz 3.1415927+00
RGEN- 1.000+00

NET. ORDER 1 2 3 4 5 6 1
RLOAD 1.500+00 1.000+00 1.000400 1.000+00 1.000+00 1.000+00 1.000+00
SAMPLE GAIN|6.170-01 5.076-01 5.051-01 S«039-01 5.031-01 S«033-01 0.000
Lt 1.410+00 S.006-01 2.391-01 2.157-01 1.689-01 1.562-01 2.)26-01
CR{1) D.000 0.000 0.000 0.000 0.000 g.000 g.000

c 1 1.182+00 8.890-02 2.211-02 1.041-02 6.641-03 }.086-03 U.396-02
L 21 4.908-01 1.719-02 2+869-02 1.459-02 9.807-03 -2+.434-02
CR(2) 4.015-01 6.920-01 8.563-01 9.680-01 9.352-01 -2.645-01
FR{2} 3.559-01 3.418-01 3.354-01 3.318-01 3.235-01 3.278-01
c t2) 1.743+00 6.944-02 1.3D6-02 J.645-03 -8.337-0D2 8.556-02
LI 4.612-01 8.518-02 3.310-02 8.140-03 ~1.746-02
CR{3} d.642-01 6+573-01 1.661-01 1.1771+00 -5353-01
FRII 6.886-01 6+726-01 64645-01 6.53%4-01 64559-01
C t3) 1.395400 1.011-02 1.335-02 3.031-02 ~1.68)-D0¢
L 4+5397-01 8.7399-02 24198-02 -1.934-01
CRty} 4.897-01 6.520-01 9.230-01 -1.354-02
FRIW) 1.015+00 9.991-01 9.903-01 9.846-01
C ty) 2.100+00 1.066-02 2.884-02 -~3.8453-02
L 5} 4.557-01 8.750-02 1.866-01
CRtS) 5.009-01 6.658-01 J«400-01
FRILS) 1«333+00 1.323+00 1314200
cC t5) 2.160+00 1.378-D2 ~%.917-02
L s 4.525-01 1.130-01
CR(G} 5.157-01 5.209-01
FRIS) 1.€62+00 164600
C (8} 2133400 8.209-02
Lt 4.587-01
CRtT1) S5.138-01
FRIN 138300
c 1) 242209400
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Table 3. Network elements for T = 10 us, R, = 50Q

29 UNITSnes
T2 1.0000000+01}
RGEN> 5.000401

MICROSECONDMEGAHERTZsOHMsMICROHENRYyMICROFARAD

NET. ORDER 1 2 3 4 H 3 Y
RLOAD 1.500+01 5.000+01 5.000+01 $.000+01 $.000+01} 5.000+01 5.0004+0%
SAMPLE GAIN|B.170-01 S.076-01 5.051-0% S.039-01 5«031-01 $.033-01 g.000

L en 2. 2UU4s02 7.8967+01 4.769+01 3.834401 2.688401) 24817140} 3.8 401
CRI(1) 0.000 0.000 0.000 0.000 0.000 0.000 0.0060

c 1) 7.526-02 5.,660~03 1.446-03 E.E24-04 4.232-04 6.925-05 3.361-03
L 2l T.812+01 1.228¢01 4.567+00 24322400 1.561¢00 -3.874¢00
CRtz} Z.594-02 4,405-02 5.452-02 6.162-02 5.3548-02 ~-1.680-02
FRL2) 1.118-01 1.074-01 1«054~-01 1.042-01% 1.035-01) 1.030-01
c 21 > 1. 114-01 4.421-03 8.317-04 2.321-04 -3.143-03 5.487-03
LN 7.435+0) 1.35€+01 S.268+¢00 1.296+00 ~2«119+00
CRt3} 2.955-02 4.185-02 4,881-02 1e131-01 ~-3.8408-02
FR(3) 2+41€3-01 24113-01 2.087-01 2+012-01 2.061-C1
c t1} 1.270-C1} 8.463-03 8.436-D4% }.929-03 -1.070-03
L ) 1316401 1.400+01 Ye453¢00 =3.113+01
CRtq] 3.1312-02 B.151-02 5.876-02 -%.682-03
FRIW) 3.130-0) 3.139-01 3.111-01 3.093-01
C ta) 1.331-0% Hoe38-03 1.811-03 -24202-03
L (s 7.252+01 1.393¢0] 2.370¢01
CRIs) 3.218-02 4.239-02 8.915-03
FRIS) 4.208-01 4.)58-01 4.123-01
c ts} }«318-01 ".697-03 -3.)30-D3
L8 J.201¢01 1735401
CRLE) 3.283-02 31.316-02
FR(E) 5.221-01 S«1172-01
C (e} 1.400-01 2.679-01
L T«300¢01
CRE1) Je211-02
FRL7) 6.231-01}
cC (1 1.813-01

VL. Concluding Remarks

The element values appearing in the example of Table 3
are quite reasonable. Thus, the main goal of synthesizing
the matched filter has been achieved. However, if one is
to apply this design in practice, various questions have to
be answered, whether through computer simulation or
with actually built filters. We briefly mention some of
these here.

We start with the effects of stray capacities. Examina-
tion of Fig. 6 shows that most stray capacities could be
incorporated into the circuit elements. An exception is the
first section, that is, the section realizing the transmission
zero at infinity. As the self-resonance of a physical coil
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occurs at a finite frequency, we have here a factor which
might be prominent in limiting the applicability of this
design for very small T, i.e., very high symbol rates. An-
other unknown factor is the effect of losses in the ele-
ments, particularly in the coils.

Regarding the sensitivity of the performance criteria to
deviations from the prescribed element values, we have
some indirect evidence that as long as the transmission
zero frequencies are adjusted to their correct values, the
performance is relatively immune to slight deviations.
Finally, it has been assumed at the outset that the sam-
pling instants (t = kT) are precisely known. The effect of
slight shifts in the sampling times merits further study.
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